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Abstract
Abstract
Earthquake phase associators are a critical component of the earthquake detection pipeline, re-
sponsible for determining when, where, and how many distinct seismic sources occurred, and for
linking each seismic arrival to its corresponding source. Recent deep learning models such as GE-
NIE have demonstrated promising performance [5], but their training relies on synthetic datasets
that are not optimally tuned to real seismic network statistics. This project explores the devel-
opment of a more physically inspired synthetic data generator and its calibration using Bayesian
Optimization of key parameters controlling attenuation, missing-pick rates, inter-station correla-
tions, and travel-time uncertainty. The calibrated generator is then used to retrain GENIE in a
semi-supervised setting. Results show that this approach improves phase association performance
and enhances catalog completeness for seismicity in Central California.

Résumé
Les algorithmes d’association de phases sismiques constituent un élément essentiel de la chaîne
de détection des séismes. Ils sont responsables de déterminer quand, où et combien de sources
sismiques distinctes se sont produites, ainsi que d’associer chaque arrivée sismique à sa source
correspondante. Les modèles récents d’apprentissage profond, tels que GENIE, ont montré des
performances prometteuses [5], mais leur entraînement repose sur des jeux de données synthé-
tiques qui ne sont pas toujours ajustés de manière optimale aux statistiques réelles des réseaux
sismiques.
Ce projet explore le développement d’un générateur de données synthétiques plus inspiré des
lois physiques, ainsi que sa calibration par optimisation bayésienne de paramètres clés tels
que l’atténuation, le taux de détections manquées, les corrélations inter-stations et l’incertitude
sur les temps d’arrivée. Le générateur calibré est ensuite utilisé pour réentraîner GENIE dans
un cadre semi-supervisé. Les résultats montrent que cette approche améliore les performances
d’association de phases et augmente la complétude du catalogue pour la sismicité en Californie
centrale.

Keywords: Seismology, Graph Neural Networks, Synthetic data, Bayesian Optimization, Semi-
supervised learning
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1 Introduction
Earthquake catalogs are the fundamental records of when and where earthquakes occur. They are
used to study faults, estimate seismic hazard, and inform early-warning systems. Building these
catalogs from continuous ground-motion recordings involves two steps: (i) each seismic station
marks possible changes in the signal, producing picks ; (ii) these scattered picks must be grouped
into coherent events with an origin time, location, and magnitude. This second step—called
phase association—is difficult because events can overlap, some stations miss detections, others
report false alarms, and network coverage is uneven. Successful association therefore requires
combining information across many sensors in a consistent physical framework.

Recent machine-learning models, such as GENIE, use Graph Neural Networks (GNNs) to
learn patterns across the station network and assemble picks into events. However, training
such models requires large labeled datasets, which are not available in practice. To compensate,
synthetic picks are generated where the true event is known. If these synthetic picks fail to reflect
reality, the trained model underperforms when applied to real data.

This internship focused on reducing that gap between synthetic and real picks for Central
California. The work consisted of designing a more physically realistic synthetic data generator
and calibrating it to observed pick statistics before retraining GENIE. The generator exposes
interpretable controls—attenuation with distance, correlated successes or failures across stations,
and timing uncertainty—which were optimized using Bayesian methods. The calibrated gener-
ator was then integrated into a semi-supervised training pipeline where GENIE benefits from
both synthetic and real picks.

Contributions.

• A new generator design that accounts for anisotropy and inter-station correlations.

• A calibration procedure matching synthetic to real picks across magnitude ranges.

• Integration of the calibrated generator into GENIE’s semi-supervised training workflow.

Report outline. Chapter 2 reviews catalog building and learning-based association. Chap-
ter 3 presents the generator, calibration, and training pipeline. Chapter 4 reports calibration
results and model behavior before and after retraining. Chapter 5 concludes with perspectives,
followed by a personal assessment.
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2 State of the Art

2.1 The earthquake phase association problem

When an earthquake happens, it sends out different kinds of waves that are recorded by many
seismic stations. Each station marks the moment it thinks a wave has arrived, but these “picks”
are just individual pieces of information. The challenge is to figure out which picks belong
together and actually come from the same earthquake, while also determining when and where
that earthquake occurred. This is called phase association.

It’s not easy, because earthquakes can happen close together in time and space, stations
sometimes miss arrivals or make mistakes, and the quality of the data varies across the network.
A good association method needs to piece everything together in a way that makes physical
sense, so that each event is located correctly and each wave arrival is linked to the right source.

2.1.1 Different characteristics of an earthquake
When studying an earthquake, we first need to look at what characteristics define an earthquake.
There are a lot of characteristics but we will focus on 3 main characteristics here.

1. The source of an earthquake: Every given earthquake comes from a given source, which
is characterized by its hypocenter (latitude, longitude, depth) and origin time, with the
epicenter being the surface projection of the hypocenter. Sources can arise from tectonic
fault slip, volcanic or geothermal processes, induced seismicity, or explosions. Studying
the repartition of the sources can help us to identify ridges, faults, ... to delineate active
structures and deformation zones, constrain fault geometry, and assess catalog resolution
for subsequent analyses.
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Figure 2.1: Known active geologic faults in the San Francisco Bay Region (source: USGS).

2. The magnitude of an earthquake: An earthquake is also defined by its magnitude,
characterizing the amplitude and intensity of the earthquake. The magnitude of an earth-
quake is given by this formula ML = log10

(
A
)

− log10
(
A0(∆)

)
, where A is the maxi-

mum ground-motion amplitude measured on a standard Wood–Anderson seismograph and
A0(∆) is a distance-dependent reference amplitude (attenuation correction) as a function
of epicentral distance ∆.

The magnitude scale extends below zero, meaning negative magnitudes are also possible.

3. The phase and velocity of the wave: Each earthquake has different waves propagating
in the ground.

The first-one is the p-wave which is a compressional body wave with particle motion
parallel to the direction of propagation; it is the fastest seismic phase and typically
travels in the continental crust at about 5–8 km/s, propagating through both solids and
fluids.

The second one is the s-wave which is a shear body wave with particle motion perpen-
dicular to the direction of propagation; it is slower than P-wave, with typical crustal speeds
of about 3–4.5 km/s, and does not propagate in fluids. Something worth mentioning is
that the velocity of the wave is given by its type but also by the velocity model of the
ground that comes from regional 1D or 3D models derived from travel-time inversions
and seismic tomography using observed picks and will be supposed already known in this
study.
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Figure 2.2: Schematic of P- and S-waves and their particle-motion directions (source:
BYJU).

Now that we are aware of the different characteristics of an earthquake, the question is: how
do we collect data on earthquake? More importantly, how can we use this data to create an
earthquake catalog in a given region?

2.1.2 State-of-the-art to build a catalog of earthquake

Simplest response to the problem

To monitor the data, there is only one way: we use seismic stations placed around the globe that
record ground motion with seismometers and digitizers, continuously sampling three-component
waveforms and gives us waveform time series to analyze. We can then just look at the maximum
of the signal to detect when an earthquake occurs. However, it is very hard from only the seismic
stations signal to get informations about the phase of the earthquake, its source or how noisy is
the signal. In practice, waveforms contain noise, site and instrument effects, and arrivals from
multiple overlapping sources; manual detection is not scalable, and simple thresholding provides
unreliable onsets [1, 2] and no phase labels. This motivates automatic pickers such as PhaseNet
[12] that learn robust P/S onsets directly from continuous waveforms. That is why the first step
will be to use a process called phase picking.

Phase picking and phase association

Phase Picking To extract information from the signal, the modern way to do it is to do a
processus called phase picking, which consists of detecting the onset times of seismic phases in
continuous waveforms and outputting a list of timestamps where earthquakes are observed. It
is like a list of mark in time that tells us when an earthquake is happening at the station. Tra-
ditional methods relied on well-designed filters or mathematical operations applied to waveform
arrays but modern methods such as PhaseNet now use deep learning to learn and extract the
picks. [7, 12]

After doing phase picking, we now have a extremely large amount of picks/marks for
each station giving information about when a wave of an earthquake was seen. Therefore, the
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question is now, how do we use and aggregate the information to associate each point to a source,
a magnitude, and a phase of an earthquake wave? And knowing that so many earthquakes are
active simultaneously, how to distinguish that scrambled data to make a coherent catalog at
the end? That is where the fun begins, this processus is called phase association and is the
problem that the model I worked on, GENIE[5], tries to solve (see Figure 2.3).

Phase association
Traditional methods include back-projection, probabilistic associators, clustering, and Bayesian

mixtures [13]. For example, backpropagation aligns moveout curves across stations to score can-
didate sources. A detailed formulation is provided in Appendix A.1.

But the GENIE model differs from these approach, and uses deep learning and graph neu-
ral networks to construct a catalog from picks given by PhaseNet, using the spatial information
of the stations to aggregate information.

Figure 2.3: Steps required to build an earthquake catalog from continuous waveforms:
picking, association, location, and catalog generation.

2.2 Deep learning approaches explanation

In practice we train a parametric model fθ to map inputs to outputs and update the parameters
θ to reduce a loss. Concretely,

θ∗ = argmin
θ

1

N

N∑
i=1

L
(
fθ(xi), yi

)
.

For GENIE, x contains PhaseNet picks [5, 12] with the station and spatial graphs; y encodes
a space–time source likelihood and pick–source association probabilities. Training minimizes a
supervised loss on labeled data and, when available, adds a consistency or pseudo-label term on
unlabeled real picks.

A graph neural network (GNN) is a neural network where features live on the nodes of a
graph and, at each layer, nodes exchange information only with their immediate neighbors [3].
One round of exchanging information is called message passing; stacking several rounds lets
information travel farther across the graph (Figure 2.4).

Consider a social network where each node (person) stores their number of comments. To
estimate the global mean, each person repeatedly replaces their value with the average of their
neighbors’ values; this iterative averaging converges to the network mean.

10



The general message–passing update can be written as

h
(ℓ+1)
i = ψ

(
h
(ℓ)
i , AGGj∈N (i) ϕ

(
h
(ℓ)
i , h

(ℓ)
j , eij

))
,

where h
(ℓ)
i is node i’s feature at layer ℓ, N (i) are neighbors, eij are optional edge features,

and ϕ, ψ are small shared networks; AGG is a permutation-invariant aggregator (e.g., sum or
mean).

Figure 2.4: Toy example of message passing on a social graph used to illustrate neighbor-
hood aggregation.

This mechanism aggregates information over the network. In GENIE, we build a
station graph S and a spatial graph X, then operate on their Cartesian product S ×X. Each
node represents a (station, candidate source) pair, and messages flow along nearby stations and
nearby sources to favor moveout-consistent patterns that indicate an event.
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Figure 2.5: Schematic of GENIE: message passing on the product graph S ×X to infer
source likelihoods and pick–source associations.

Semi-supervised learning Semi-supervised learning is a machine learning paradigm that
combines a small amount of labeled data with a large amount of unlabeled data to improve
generalization. In practice, this is useful when high-quality labels are scarce or costly to obtain,
as in seismology where manual phase association is time-consuming and incomplete. A common
strategy is pseudo-labeling, where confident predictions on unlabeled samples are treated as
temporary labels and used to retrain the model, gradually transferring knowledge from synthetic
or labeled data to real, unlabeled data [4]. In earthquake monitoring, this approach has been
shown to improve both phase picking and association by leveraging abundant unlabeled picks
while retaining consistency with physical constraints [10].
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Figure 2.6: Illustration of semi-supervised learning with pseudo-labeling: (1) train on
labeled synthetic data, (2) predict on real unlabeled data, (3) select high-confidence pre-
dictions as pseudo-labels, and (4) retrain the model jointly on both. Source: MadData

2.3 How GENIE works and explanation of the syn-
thetic data

GENIE ingests per-station pick sets and the station/spatial graphs, performs message passing
on S ×X, and outputs (i) a source likelihood field and (ii) pick–source association probabilities.
Large-scale fully labeled real datasets are not available (catalogs are incomplete and phase labels
can be inconsistent), so we rely on synthetic data where ground truth is known and then adapt
the model with semi-supervised fine-tuning.

We generate synthetic data in three steps:

1. spatial generation — sample event locations and origin times within the network footprint;

2. pick generation — compute theoretical travel times with a fixed velocity model and simu-
late detections per station using distance–magnitude attenuation and coverage, with small
timing jitter;

3. noise addition — add false positives and drop a fraction of true picks with phase-dependent
uncertainty and mild inter-station correlation.

The part we will focus on in this paper is the spatial generation. The old method
was using an arbitrary d_max from which all the stations inside d_max circle to the source
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Figure 2.7: Old method of synthetic data picks generation

are selected. The stations outside were selected stochastically if they were part of the "fuzzy
probability threshold".

Old spatial sampling and independence assumptions produce unrealistically uniform source
distributions and station coverages, weak clustering along known faults, and insufficient correla-
tion in miss/false patterns across nearby stations. This mismatch reduces transfer to real picks.
In summary, this method was not flexible or realistic at all and that’s what I tried to improve.

To reduce this gap, I implemented:

1. a more realistic, tunable synthetic generator that can be adapted to different regions,

2. Bayesian optimization to fit generator hyperparameters to real pick statistics,

3. a semi-supervised training loop that re-trains GENIE with the calibrated generator so the
model improves over time.
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3 Methods and Materials

3.1 Synthetic data generator

3.1.1 Radial function

Problem to solve

We seek a probability function that assigns, for each station in a fixed network, the probability
of being selected as observing a phase given the event location and magnitude.

The function should:

1. Approach 1 near the source and decay after a distance σradial to mimic the impact of the
noise compared to the magnitude of an earthquake

2. Have σradial = g(magnitude)

3. Select a number of stations roughly proportional to event size

Formally, station selections are Bernoulli withXk ∼ Bernoulli(pk) and pk = f(radius,magnitude).

Solution

We adopt a radial probability function f(r) that depends on the source–station distance r and
a magnitude-dependent shape parameter p. To keep the 3σ scale comparable across p, we use

f (p)σr
(r) = exp

(
− r2p

2 9 p−1 σ 2p
r

)
,

which maintains f (p)σr (3σr) ≈ 0.01 for all integer p ≥ 1. H
Optionally, a scaling factor α ≥ 0.9 is applied to prevent f from saturating at 1 in the center

and allow for tunable miss_pick: pr = α f
(p)
σr (r).
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Figure 3.1: Radial selection probability as a function of source–station distance r for a
given magnitude-dependent shape p.

Figure 3.2: One-dimensional slices of f
(p)
σr (r) for several exponents p, showing sharper

decay for larger p.
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Figure 3.3: Same as Figure 3.2, highlighting the common 3σ scale across different p.

Elliptical part

To account for anisotropy and radiation pattern, we replace the Euclidean distance by a Maha-
lanobis distance defined by a positive-definite covariance Σ and center c:

r2 = (x− c)⊤Σ−1(x− c), p(x) = exp

(
− r2

σ2

)
.

The ellipse (x − c)⊤Σ−1(x − c) ≤ 1 has semi-axes
√
λ1,

√
λ2 and orientation given by the

eigenvectors of Σ. In practice one can sample a rotation θ and semi-axes ℓ1, ℓ2, form R(θ),
D = diag(ℓ1, ℓ2), then set Σ = RD2R⊤. We can basically choose the orientation and eccentricity
of the ellipse

Figure 3.4: Example of elliptical anisotropy: station-selection probability elongated along
a preferred direction.
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Figure 3.5: Example with a different ellipse orientation and eccentricity illustrating tun-
able anisotropy.

3.1.2 Noise

First iteration

Problem Most of the time, when stations don’t detect an earthquake, it is because of the
unknown distribution of the ground, so there is a high likelihood that they are close to each other.
Therefore, to reproduce spatial correlations in missed and false picks, we introduce spatially
correlated noise fields instead of i.i.d. perturbations.

Solution

Cholesky sampling We define a "covariance distance matrix" between stations i, j by a
radial kernel

Σij = exp

(
−d(i, j)

2

σ 2
cov

)
,

compute its Cholesky factor L (Σ = LL⊤), draw z ∼ N (0, I), and set ε = Lz ∼ N (0,Σ).

Logistic mapping To transform this noise between [-3σnoise, 3σnoise] to a probability func-
tion we map ε to [0, 1] via a logistic transform that defines the "harshness" of the noise with
σlogistic.

pε(x, y) =
1

1 + exp
(
− ε(x, y)/σlogistic

) ,
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Figure 3.6: Logistic mapping pε used to convert correlated Gaussian noise into station-
selection probabilities (example with σlogistic = 1).

Sum Finally, we combine with the radial probability pr using a clipped sum of the noise
probability and the radial probability.

ptot = pr + [pr > 0.02]λnoise 2
(
pε − 0.5

)
ensuring ptot ∈ [0, 1] and controlling the noise influence by λnoise.
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Figure 3.7: Plot of the noise, radial function, summed probabilities and picked stations
on top

Second iteration

Issue with last method The logistic function is not interpretable and we want to simplify
the problem to make it more flexible and avoid tradeoff. The sum function is also really arbitrary
and we want to limit this choice.

New method Now instead of using the correlated noise on the data as a way to perturb the
probability we want instead to perturb the considered distance from the points to the
source which means that we pass perturbed points to the radial function. On top of that, we
normalize the distance when passing to the Mahalanobis distance so the noise doesn’t have to
be adapted in any way.

We still use λnoise to scale the noise.
This is what we obtain (Figure 3.8).
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Figure 3.8: Comparison between real and synthetic spatial station selections (real on the
very left, synthetic after that with p-wave on top and s-wave below) after switching to
distance perturbations before evaluating the Mahalanobis-based probability.

3.2 Calibration via Bayesian Optimization

3.2.1 How does the Bayesian Optimization works?

Instead of manually tuning generator parameters, we use Bayesian Optimization (BO) to search
for settings that make synthetic picks better match real ones. BO is well-suited to low-dimensional,
expensive objectives. A simplified description is given here; full details of the acquisition function,
evaluation metrics (inertia, Moran’s I, overlaps), and objective are provided in Appendix A.2.

We use BO to optimize the parameters of an objective function that quantifies the distance
between synthetic data and the best generated catalog so far. The goal is to compare two spatial
point distributions and measure how close they are.

3.2.2 Evaluation metrics for the objective function
To define the objective, we first specify metrics that characterize the distribution of 2D points
(selected stations) in space.

Inertia

Let S = {si}ni=1 ⊂ R2 be selected station coordinates and s̄ = 1
n

∑
i si their centroid.

The (unnormalized) spatial inertia is

I(S) =
n∑

i=1

∥∥si − s̄
∥∥2
2
,

and the mean inertia is I/n. We compute this for P picks and S picks separately, and
optionally for their union, to capture dispersion relative to the epicentral region.

21



Figure 3.9: Examples of small and large spatial inertia for selected-station sets relative to
their centroid.

Moran’s I

Given binary indicators xi ∈ {0, 1} of station selection on a fixed station set and a spatial
weight matrix W = [wij ] (e.g., wij = exp[−d(i, j)/ℓ] with wii = 0), Moran’s I measures spatial
autocorrelation:

I =
n∑

i̸=j wij

∑
i̸=j wij (xi − x̄)(xj − x̄)∑

i(xi − x̄)2
, x̄ =

1

n

∑
i

xi.

Values I > 0 indicate clustering (nearby stations tend to co-select), I < 0 indicates dispersion.
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Figure 3.10: Example distributions illustrating positive and negative spatial autocorrela-
tion as measured by Moran’s I.

Statistics metrics

On top of inertia and Moran’s I, we also track:

• number of P-wave picks

• number of S-wave picks,

• size of the intersection between P and S selected stations.

To compare a real event R and a synthetic event S, we apply set operations on selected station
sets AP (R), AS(R) and AP (S), AS(S):

• intersection size |A(R) ∩A(S)|,

• symmetric difference size |A(R)∆A(S)|.

These can be computed on P only, S only, or the union, enabling 1:1 comparisons for events with
the same source and magnitude.

3.2.3 Magnitude bins
We compare events from the real catalog to synthetic events generated at the same source and
magnitude. Because magnitudes are not uniformly distributed in the real catalog, we sample
real events using a magnitude-stratified scheme (uniform over predefined bins). Since station
selection patterns depend strongly on magnitude, we evaluate metrics within magnitude bins
to avoid bias and local optima.
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3.2.4 Evaluation function
The evaluation function is the sum oof mean metrics over each magnitude.

f(params) =

Nmetrics∑
i=1

meanm∈bins

(∣∣metricreal
i (m)−metricsyn

i (m; params)
∣∣

metricreal
i (m) + ε

)
,

with a small ε > 0 for numerical stability. BO seeks parameters that minimize f .
The parameters to optimize are:

Figure 3.11: Hyperparameters tuned by the Bayesian optimizer for the synthetic genera-
tor.

This shows the distributions obtained before and after optimization.
Before:

Figure 3.12: Real vs synthetic event comparison before calibration: P (top-left), S
(bottom-left) for real; P (top-right), S (bottom-right) for synthetic with matched source
and magnitude.
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After:

Figure 3.13: Real vs synthetic event comparison after calibration (example 1) with
matched source and magnitude for P and S selections.

Figure 3.14: Real vs synthetic event comparison after calibration (example 2) with
matched source and magnitude for P and S selections.

The next step is to do a 3-round optimization procedure that also optimizes additive
time noise applied to picks produced from the 2D spatial selection.

3.3 Semi-supervised training of GENIE

Once we have a calibrated synthetic generator and a way to align it with the best catalog, we
build a pipeline that keeps improving the model.
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Figure 3.15: Semi-supervised training pipeline: calibrate generator → retrain GENIE on
calibrated synthetic plus high-confidence real associations → re-infer and harvest new
labels.

This pipeline is semi-supervised: we use the best catalog generated so far to calibrate
the synthetic generator and then retrain GENIE, i.e., pseudo-labeling [4]. Predictions on real
data provide structure that reflects actual pick statistics; calibrated synthetic data narrows the
domain gap. For now, we focus on improving the generator via optimization before closing the
loop. After these upgrades, we expect the closed loop to further improve performance, consistent
with prior self-training approaches in phase picking (e.g., Tonga [10]).
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4 Results and Discussion

4.1 Generator calibration

When training a model, the first thing we want to check is the quality of the training data. For
that, we plot for each event the picks generated (both temporal and spatial but my work focused
only on the spatial aspect) and look at three things.

• Is there any picks isolated from the rest of the picks?

• Are the generated picks coherent with the given magnitude?

• Is the difference between p and s-wave coherent with the radiation pattern we know (Cf.
Chapter 1)?

When looking at the figures below, we see that those 3 criteria are respected (Figures 4.1 and
4.2).

Figure 4.1: Example training event showing station selections and P/S differentiation
used for qualitative checks.
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Figure 4.2: Another training example illustrating coherence between magnitude, coverage,
and P/S patterns.

4.2 Results of the new model compared to the best one

4.2.1 GR Curves and number of detected earthquakes
One important way to assess the quality of the model is to compare the catalog to the USGS
Catalog [8, 9], the U.S. Geological Survey’s national earthquake catalog, which compiles analyst-
reviewed origin times, locations, and magnitudes reported by regional and national seismic net-
works, and serves as a reference dataset for the United States. Using that Catalog, we can
compare the number of events in Central California we detect by magnitude to the strongest
existing Catalog in the region. This is what we obtain (Figures 4.3 and 4.4).

Figure 4.3: Cumulative number of detected events versus magnitude in Central California:
comparison between GENIE-derived catalog and USGS catalog (panel 1).
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Figure 4.4: Cumulative number of detected events versus magnitude in Central California:
comparison between GENIE-derived catalog and USGS catalog (panel 2).

The important thing to look at is how close is the number of big magnitude detected events.
Because these are "easy" to detect, we know USGS catalog have everything and we don’t want
to have any offset in high magnitudes. We see here that the GENIE model curve match the
USGS curve in high magnitude so it is very good.

On top of that, we see that the GENIE model detects way more small events, compared to
the USGS catalog and in fact improves it.

Finally, we have better results with our last model since we compute only one year of data
while outperforming the USGS catalog.

4.2.2 Source location
Another important figure for assessing the quality of our model is the placement of all the sources
detected over a year on a 2D space. This allows us to compare with a real map of the faults and
see if our source are localized in the right place (Figure 4.5).
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Figure 4.5: Spatial distribution of detected sources over a one-year period in the study
region.

Figure 4.6: Reference map of known faults in the region used for qualitative comparison
with detected source locations.
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Looking at this figure, we see that the sources closely match with real faults, and is less
clustered compared to the old model. That is a good sign that the model is realistic and making
good predictions. A lot of the sparse data will then be relocated by the GenieDD process.

4.3 Discussion

4.3.1 Challenges, errors, and adaptations

Challenges The main challenge was bridging two learning curves at once: (i) enough geo-
physics to judge whether synthetic pick patterns were physically plausible, and (ii) ML know-how
to interpret changes in the generator and thresholds. A second challenge was the high interac-
tion between parameters (attenuation, correlations, miss/false rates, thresholds), which made
non-linear behaviors. To cope, I relied on systematic visualizations and small ablations to make
each effect observable.

Errors The first radial-only generator was difficult to interpret, as several controls were en-
tangled. This led to unstable evaluations, with magnitude skew and thresholds varying unpre-
dictably across stations. It became clear that generator design and thresholding needed to be
co-developed.

Adaptations I addressed these issues by redesigning the generator with explicit, low-dimensional
controls for attenuation, miss/false rates, and correlations. I re-sampled data to balance mag-
nitude bins, added correlated noise and elliptical geometry, and retuned thresholds to maintain
consistency across the pipeline.

4.3.2 Next steps
Future work should:

1. Extend correlated noise to the temporal domain to better reproduce inter-station timing
residuals.

2. Add depth and full 3D ellipsoids to model attenuation and coverage realistically.

3. Complete the semi-supervised loop by alternating calibration, retraining, and re-inference,
while monitoring recall and completeness on fixed validation windows.
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5 Conclusion and Perspectives

5.1 Summary of contributions

This internship tackled the gap between simplistic synthetic generators and real pick statistics,
a key limitation for training phase associators. My contributions were:

• Generator design: developed a physically motivated generator with elliptical geometry,
explicit controls for attenuation and noise, and correlated station behavior.

• Calibration: defined a stable, magnitude-aware evaluation objective (inertia, Moran’s I,
pick counts, overlaps).

• Optimization: implemented Bayesian Optimization to tune generator parameters against
this objective.

• Integration: combined the calibrated generator with GENIE’s training pipeline, showing
better alignment with real pick structure and improved small-event coverage.

The result is a more realistic and tunable generator, a principled calibration method, and
an integration path toward semi-supervised retraining. Remaining limitations are the lack of
time-correlated noise, the 2D assumption, and the absence of a fully closed semi-supervised loop.

5.2 Future directions

Promising extensions include: (i) spatio-temporal correlated noise, (ii) depth and 3D ellipsoids for
more realism, (iii) a closed-loop semi-supervised pipeline, (iv) robustness tests on other networks,
and (v) evaluation of downstream impact on relocation, magnitude estimation, and catalog
analysis.
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A Appendices

A.1 Backpropagation formulation

Traditional methods to do phase association are back-projection (time-reversal stacking), maximum-
likelihood and probabilistic associators [13], graph-based optimization, RANSAC-style clustering,
and Bayesian mixture-model clustering. One of the simplest is backpropagation, consists in align-
ing theoretical moveout curves across stations for a candidate source and stacking station-wise
evidence to score space–time hypotheses. A common formulation is

BP(x, t0) =
∑
s∈S

ws max
τ∈Ds

exp

(
−
[
τ −

(
t0 + Tk(s,x)

)]2
2σ2

)
,

where S is the station set, Ds the picks on station s, Tk(s,x) the theoretical travel time for
phase k from candidate source x to station s, ws station weights, and σ a kernel bandwidth.

A.2 Bayesian Optimization details

Bayesian optimization (BO) fits a probabilistic surrogate to an unknown objective f(θ) and uses
an acquisition function to choose the next parameters to evaluate. We place a Gaussian process
prior on f , yielding at iteration t a posterior mean µt(θ) and variance σ2t (θ) after observing
{(θk, f(θk))}tk=1.

A common acquisition is Expected Improvement (EI):

EIt(θ) = E
[
max(0, f⋆ − f(θ))

]
= (f⋆ − µt) Φ

(
f⋆ − µt
σt

)
+ σt ϕ

(
f⋆ − µt
σt

)
,

where f⋆ is the best observed objective, and ϕ,Φ are the standard normal pdf and cdf. At
each step BO selects θt+1 = argmaxθ EIt(θ), evaluates f(θt+1), and updates the surrogate. This
is well-suited to low-dimensional, expensive objectives.
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Figure A.1: Illustration of a function optimized by Bayesian optimization with an acqui-
sition function (source: CERN).

We use BO to optimize the parameters of an objective function that quantifies the distance
between synthetic data and the best generated catalog so far. The goal is to compare two spatial
point distributions and measure how close they are.
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Glossary
2

P-wave: Primary (compressional) seismic wave, fastest type of body wave, travels through
solids and fluids.

S-wave: Secondary (shear) seismic wave, slower than P-wave, propagates only through
solids.

Phase association: Process of grouping seismic picks from multiple stations into coherent
earthquake events with estimated source parameters.

PhaseNet: Deep learning model for automatic seismic phase picking from continuous wave-
forms.

GENIE: Graph Neural Network (GNN) model for phase association, trained on synthetic
seismic data.

Graph Neural Network (GNN): Neural network architecture operating on graphs, useful
for data with relational structure such as seismic station networks.

Synthetic data: Artificially generated data used to train models when labeled real data are
scarce or incomplete.

Bayesian Optimization: Global optimization strategy that builds a probabilistic model of
the objective function and selects samples based on uncertainty.

Mahalanobis distance: Generalized distance measure that accounts for correlations be-
tween variables, used here for anisotropic calibration.

Radial Basis Function (RBF): Kernel function used to model spatial correlations in
synthetic seismic noise generation.

Semi-supervised learning: Machine learning approach that combines limited labeled data
with abundant unlabeled data during training.

Seismic catalog: Database of earthquake events including location, origin time, magnitude,
and phase picks.
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